Archimedean Copula Parameter Estimation with Kendall Distribution Function
نویسندگان
چکیده
منابع مشابه
Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملTwo-stage estimation using copula function
Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two- stage estimation divides this problem to several simple optimizations. It saves significant amount of computational time. Two methods are investigated for estimation consistency check. We revisit Sankaran and Nair's bivari...
متن کاملArchimedean copula estimation using Bayesian splines smoothing techniques
Copulas enable to specifymultivariate distributions with givenmarginals.Various parametric proposals weremade in the literature for these quantities, mainly in the bivariate case. They can be systematically derived from multivariate distributions with known marginals, yielding e.g. the normal and the Student copulas. Alternatively, one can restrict his/her interest to a sub-family of copulas na...
متن کاملParameter estimation for pair-copula constructions
We explore various estimators for the parameters of a pair-copula construction (PCC), among those the stepwise semiparametric (SSP) estimator, designed for this dependence structure. We present its asymptotic properties, as well as the estimation algorithm for the two most common types of PCCs. Compared to the considered alternatives, i.e. maximum likelihood, inference functions for margins and...
متن کاملCopula Estimation of Distribution Algorithm Sampling from Clayton Copula
Estimation of Distribution Algorithms (EDAs) are implemented mainly by the three steps: selecting the promising subset from the current population, modeling the distribution of the selected population and sampling from the estimated model. Modeling and sampling are key steps of EDAs. They are also research topic of copula theory to represent the multivariate joint distribution by a copula and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Institute of Science and Technology
سال: 2017
ISSN: 2146-0574
DOI: 10.21597/jist.2017.177